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An explicit formula is derived for calculating the delocalization corrections 
(tails) to be added to the strictly localized bond orbitals. It was obtained by 
solving analytically the SCF problem for the interbond interactions in a 
linearized approximation. The model calculations at the CNDO/2 level show 
that this simple approach is sufficient to account for the molecular conforma- 
tions. 
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In recent years there is a considerable interest in analysing and constructing 
molecular wave functions in terms of strictly localized molecular orbitals 
(SLMOs) corresponding to individual bonds, lone pairs, etc. [1-13]. Different 
procedures have also been proposed for calculating the small delocalized com- 
ponents (tails) always present in the SCF localized orbitals. (As pointed out in 
[8, 13, 14], the usual, orthogonal SLMOs without delocalization corrections are 
not able to account for conformational effects, etc.) These procedures usually 
apply the SCF perturbation theory [3, 6, 11]. In this approach the tails generated 
in the given order appear in the perturbation expression for the next order, 
leading to an iterative procedure (The simple perturbation theory is adequate 
only in an extended-Hiickel type formalism [1, 15, 16], or if one departs from 
the single determinant wave function as in the PCILO method [17].) 
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Here we develop an approximate method for calculating the tails self consistently 
without any iterations. This can be done because the tails are usually small 
enough to justify the following approximations: (i) any terms containing products 
(squares) of tails can be neglected; (ii) the interaction of different fragments can 
be taken into account in a pairwise manner: three-fragment interactions represent 
higher order effects. 

The analysis may be most conveniently done by turning to a bond-orbital basis, 
which consists of the (bonding and antibonding) self consistent SLMOs 1 [6, 9, 13]. 
Then one has to determine for each bonding MO the admixture of the antibonding 
orbitals of other bonds, which represents the only first order effect [13]. It was 
also found in [8, 14] that this type of admixture between vicinal bonds is just 
responsible for the rotational barriers. As a consequence of approximation (ii), 
the resulting MOs will not be strictly orthonormalized, so one has to perform 
their (L6wdin-)orthogonalization. 

Let i and i* be the appropriate bonding and antibonding SLMOs of a given 
fragment, and let us consider the interaction of this fragment with another one 
possessing orbitals f and ]*. The delocalization effects within this sub'problem 
result in new orbitals: 

]~i)=li)+nl] * ) [ffj) = I/)+ eli*) 
( 1 )  

= I j * ) - , 7 1 i > .  

Here r/I]*) and #li*) are the tails of the resulting bonding orbitals. (If one of 
the fragments describes a lone pair, the corresponding antibonding MO is absent.) 
If the SLMOs are orthogonal, the delocalized MOs (1) remain orthogonal but 
are normalized only to the first order. By Eq. (1) one can construct the 4 •  
density matrix 2 and the 4 • 4 Fock matrix F. Because the SLMOs are solutions 
for the intrabond SCF problems, the condition for the self-consistency can be 
expressed as 

<,P, IPI,Pr> = o 
(2) 

= 0 .  

Expanding (2) for orbitals (1) and neglecting all terms of second and higher 
orders in r /and O, one obtains a system of two linear inhomogeneous algebraic 
equations with the solution: 

iEFiO. ( j ,  +FO.,. o o - -  - F i i ) F i i .  

r t  - ( F O . i .  _ F o + I1)(FOi.i. _ F o. + j , )  - I 2 J 2 "  (3) 

Here h=3(q*l i f*) - ( i i l j* f*) ;  I2=4(ij*li*j)-(ii*lff*)-(ij]i*f*); and the J 
integrals can be obtained from I by interchanging i and j everywhere. F ~ is the 

1 They  are obtained by minimizing the total molecular  energy with respect to the polarities of the 
bonds built up of pairs of directed hybrids. 
2 According to (i) in the density matrix one has to conserve only terms linear in tails. Thus the 
density matrix will have the correct idempotency properties also up to first order, only. 
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zeroth order Fock matrix built up by SLMOs. (For the two-electron integrals 
the (11122) convention is used.) Similarly, an analogous formula is valid for 0. 

If one uses the Z D O  approximation, the terms coupling the two equations (2) 
are proportional  to the interbond integral (ii*ljj*) which can be expected very 
small. The neglecting of this integral permits to decouple the equations and 
calculate all the delocalization corrections quite independently. The relevant 
formula becomes: 

hii* (4) 
rl  = F i ~ - F ~  + ( i i [ j j * )  

where h is the core matrix. 

It is interesting to note that Eq. (4), but not the more general formula (3), is 
formally the same as that used in the PCILO method [14] for determining the 
first order  delocalization contribution to the zeroth order wave function, and 
the corresponding second order energy term. However,  in spite of this 
resemblance, there are some essential differences between the PCILO method 
and our approach. Namely, the wave function used in PCILO is a multideter- 
minantal one, while we remain within the single determinant scheme and use 
formula (4) to calculate the delocalization corrections to the SLMOs. The 
resulting MOs are then orthonormalized and we calculate the correct expectation 
value of the energy, corresponding to the single determinant obtained. As a 
consequence, our energy is a strict upper bound to the SCF energy. 

The table and the figure show the results of some C N D O / 2  sample calculations. 
As may be seen, the calculation of tails by Eq. (4) gives energies which are 
significantly better  than the SLMO values, and may be considered sufficiently 

Table 1. The CNDO total energies and rotation barriers of simple molecules a 

Molecule SLMO 

Total energy (a.u.) Barrier (kcal/mol) 
standard standard 

Eq. (4) CNDO/2 SLMO Eq. (4) CNDO/2 

CH4 -10.11219 -10.11337 -10.11359 
C2H6 
eclipsed -18.75608 -18.80519 -18.80748 

0.24 2.29 2.27 
staggered -18.75646 -18.80885 -18.81110 
H20 -19.86191 -19.86271 -19.86288 
CH20 -26.75291 -26.82912 -26.83590 
HCOOH -45.14581 -45.29080 -45.30924 
CHaNH2 
eclipsed -22.52124 -22.56153 -22.56443 

0.21 1.56 1.56 
staggered -22.52157 -22.56402 -22.56691 
CH3OH 
eclipsed -28.50736 -28.54741 -28.55053 

0.13 0.77 0.79 
staggered -28.50756 -28.54863 -28.55179 

a Experimental bond lengths and ideal tetrahedral bond angles were used. 
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Fig. 1. The comparison of the 
CNDO/2 potential energy curves for 
ethane in different approximations 

accurate.  Especial ly impor tan t  is that  the energy  differences (barriers of rotat ions)  
are practically equal  to the exact  SCF values. As  Fig. 1 shows, the potent ia l  
ene rgy  profile given by the present  m e t h o d  is quite parallel  to the full SCF one,  
while the S L M O  mode l  is unable  to account  for  the barrier.  

W e  hope  that  the present  results permit  to develop  ra ther  fast semiempirical  
( C N D O ,  M I N D O ,  etc.) me thods  to s tudy the conformat ion  of  very large 
molecules  at the SCF level. The  only  i teration a lgor i thm will be necessary in 
the calculation of  the op t i m um  SLMOs,  which is very fast. A n  impor tan t  feature  
of  the approach  is that  the calculation of  the tails is only an N 2 p rocedure  (N  
being the n u m b e r  of bonds  and lone pairs). W o r k  in this line is in progress.  
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